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ABSTRACT: We study the microphase separation of block copolymer electrolytes
containing lithium salts. Taking poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as
an example, we show that in the presence of lithium salts the disordered-to-lamellar
phase transition becomes first-order even at the level of mean-field theory, with a
moderate range of temperature in which both the disordered and lamellar phases
coexist, and different salt concentration in the coexisting phases. The coexistence
arises from the different partitioning of the salt ions between the disordered phase
and the lamellar phase, driven primarily by the solvation energy of anions. A
striking consequence of the coexistence is that heating a lamellar phase into the
coexistence region leads to increased order in the remaining lamellar phase.

Salt-doped block copolymers consisting of ion-dissolving
and inert blocks constitute a new class of material that

combines ionic conductivity with mechanical robustness. In the
energy arena, this hybrid functionality is being exploited for
rechargeable lithium battery applications.1−3

At the level of mean-field theory as first developed by
Leibler,4 the transition from the disordered state to the lamellar
phase of salt-free AB block copolymers is second order. For
symmetric diblock copolymers, the transition occurs at χN =
10.495, where N is the number of segments in the polymer
chain and χ is the Flory−Huggins interaction parameter. The
second-order nature of the transition remains unaltered (at the
level of mean-field theory) when one or both blocks are
charged.5 However, Fredrickson and Helfand showed that
composition fluctuation makes this transition first-order,6 with
an order parameter at the transition that varies with the degree
of polymerization as N−1/6, thus approaching a second-order
transition in the limit of infinite chain length. In this work, we
show that salt doping makes the disordered-to-lamellar
transition first order even at the level of mean-field theory,
and the discontinuity in the transition persists at infinite chain
length.
Experimentally, the transition from disordered to lamellar

phases in poly(ethylene oxide)-b-polystyrene (PEO-b-PS)
containing lithium bis(trifluoromethylsulfonimide) (LiTFSI)
salt has recently been studied by small-angle X-ray scattering
(SAXS) and ionic conductivity measurements.7,8 Near the
transition, the scattering intensity exhibits a superposition of
both sharp and broad peaks that persists in a temperature
range. While the origin of this superposition has yet to be
clarified by theory, analysis of both the SAXS and conductivity
data by Teran et al.8 supports the scenario of coexistence
between the disordered phase and the lamellar phase in a finite
range of temperature, as anticipated in ref 7. The abrupt
increase in the conductivity across the transition8 is also
consistent with a first-order phase change. While one might

argue that a first-order transition could be explained by the
Fredrickson and Helfand fluctuation mechanism,6 the transition
in that theory occurs at a specific transition temperature for a
given block composition, whereas the suggested phase
coexistence in the block copolymer electrolytes extends over
a relatively wide temperature range (110−118 °C). Therefore,
fluctuation is unlikely to be the primary mechanism for this
coexistence.
We have recently developed a theory for understanding the

effects of salt doping on the miscibility between the constituent
diblocks and the domain spacing of the ordered phases9,10 in
block copolymers such as PEO-b-PS. A key ingredient in our
theory is the preferential solvation of the anion by the more
polar component (e.g., PEO); the anions effectively play the
role of a selective solvent, making the two blocks less miscible.
We expect this preference to lead to different partitioning of the
salt ions between the disordered phase and the lamellar phase,
which can then give rise to a first-order transition. However, in
contrast to a neutral selective solvent, the partitioning of the
salt ions between the two phases depends on the electrostatic
potential arising from the Coulomb interactions. In the absence
of the preferential solvation energy, refs 5, 9, and 10 showed
that electrostatic interactions alone would make the two blocks
more miscible. Our theory treats the coupled effects of the
preferential solvation energy and electrostatic interactions. We
now use this theory to examine the full behavior of the
disordered-to-lamellar phase transition.
We consider nc AB diblock copolymers of N segments per

chain, and n0 cations (Li
+) and n0 monovalent anions (X

−) in
volume V. The number of A and B segments in the block
copolymer chain is NA and NB, respectively. The monomer
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volumes for A and B and the volumes of the Li+ ion and anion
are, respectively, vA, vB, v+, and v−. For easy reference to the

polymers of interest in experiments, we refer to A as the PEO
block and B as the PS block. However, in the numerical
calculations, we do not use the molecular parameters specific to
the PEO−PS systems. Rather, we consider a generic diblock
copolymer with qualitatively similar interactions with the
lithium salt as the PEO−PS. In subsequent discussions, the
terms PEO block and PS block are not to be taken literally but
rather refer to PEO-like and PS-like blocks. To highlight the
effects of salt doping, such as electrostatic interactions, the
translational entropy of the anions, and most importantly the
solvation energy of the anions, we consider the simple case of
symmetric diblock copolymers, with equal Kuhn length b,
monomer volume (vA = vB ≡ v0), and degree of polymerization.
Since the Li+ ions are small, and on account of a possible
electrostriction effect,11 we ignore the volume of the Li+ (i.e., v+
= 0). While it is straightforward to include the volume of the
anion as was done in our earlier work,10 in order not to be
encumbered by small quantitative secondary effects due to the
volume of the anion, we ignore its volume as well (i.e., v− = 0).
In the same spirit, we do not include the shift in the χ
parameter due to the altered monomer identity as a result of Li+

binding to the EO monomers.9,10 In this work, we consider
only the lamellar morphology for the ordered phasesthe full
phase diagram that includes other ordered morphologies will be
presented in the future.
Since the binding energy between Li+ and oxygen is very

large,12 the Li+ ions are predominantly complexed with the EO
groups.13,14 We therefore assume that all Li+ ions bind to the
EO groups but are free to redistribute on the backbones of the
PEO chains, subject to interaction with the anions15 and to the
fixed total number of ions. As a first approximation, we ignore
coordination of the Li+ by multiple oxygen groups. The binding
of a Li+ to the s-th EO group of the i-th polymer can be
conveniently represented by an Ising-like binary variable Cis,
such that Cis = 1 if there is a Li+ on the site and Cis = 0
otherwise. The anions can be bound to the Li+ on the PEO, or
they can be free. Our previous study showed that the fraction of
ion pairs is insignificant at low salt concentrations [Li+]/[EO]

< 0.1,9 so we will ignore ion-pair formation in the rest of this
paper.
The free energy of our system is constructed within the self-

consistent field theory by using standard field theoretical
techniques.16 First, we introduce the coarse-grained density
field of the various components by a set of identity
transformations. We then sum over the ion and chain degrees
of freedomthis includes summing over the binding variable
Cis and integrating the coordinates of the anions and the
polymers. The full details of the derivation are presented in ref
10. The resulting variational Helmholtz-free energy functional
in units of kT for the lithium salt-doped block copolymer is
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Here, cγ(r)⃗ is the density field of the ion; ϕp(r)⃗ is the local
volume fraction of the p block; ωα(r)⃗ is a conjugate field of the
species α; η(r)⃗ is the incompressibility field; and ψ(r)⃗ is the
electrostatic potential. We have introduced a reference density,
ρ0 = 1/v0, to make η dimensionless. ξc and ξ− are the internal
partition functions of the polymers and the free anions. Qc and
Q− are the configuration partition functions of a single
Gaussian-chain block copolymer and an anion. VBorn is the
solvation energy of the anion. χ is the intrinsic Flory−Huggins
parameter for the salt-free polymer.
The terms associated with ψ arise from the Coulomb

interaction between the ions. In general, the dielectric constant
εr depends on the composition in some complicated manner. In
this paper, we assume a simple volume-fraction-weighted
average, εr(r)⃗ = εAϕA(r)⃗ + εBϕB(r)⃗, where εA and εB are the
dielectric constants of the block A and the block B, respectively.
We have also introduced the vacuum Bjerrum length, l0 = e2/
(4πε0), where e is the elementary charge and ε0 is the electric
permeability of vacuum.
The solvation free energy VBorn plays a crucial role in our

theory. Unfortunately, no simple theory exists for the solvation
of small ions in polymeric liquid mixtures. Therefore, we make
the simplest approximation by taking the solvation energy to be
the Born energy of an ion in a dielectric medium with local
dielectric constant εr(r)⃗, VBorn(r)⃗ = e2/[8πaε0εr(r)⃗] = l0/
[2aεr(r)⃗], where a is the Born radius of the anion.
The self-consistent mean-field equations are obtained by the

variation condition, δF/δΩ = 0, where Ω is a generic notation
for any of the field variables in eq 1.10 The spatially uniform
solution of the self-consistent mean-field equations provides the
free energy of the disordered phase. For the lamellar phase, the
equations are solved on grids spanning one period of the
lamellae [0,D], with 200 grid points. The free energy is then
minimized with respect to the lamellar period D. For easy
reference, we employ the same set of parameters as in ref 10: N
= 200, εA = 7.5, NA/N = 0.5, v0 = 0.1 [nm3], l0 = 43.6 [nm], b =
0.56 [nm], and a = 0.38 [nm].
The free energy given by eq 1 applies to a closed system

having a fixed number of polymer chains and salt concen-

Figure 1. Phase diagram containing the lamellar phase (LAM) and
disordered phase (DIS) for εB = 4.0. The shaded area indicates the
phase coexistence. The red triangles correspond to the mean-field,
second-order critical point of the salt-free block copolymer computed
by Leibler.4 The inset shows how the salt concentration changes along
the disordered branch and the ordered branch of the phase boundaries
as χN is decreased.
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trations. For the purpose of determining the phase coexistence,
it is more convenient to introduce the thermodynamic potential
W = F − μcsV, which is the free energy corresponding to a
semiclosed system where the ions are open to a reservoir with
the chemical potential μ and cs is the overall salt concentration
in the system. We then minimize W with respect to cs for the
disordered and lamellar phases, respectively. By varying μ, we
obtain the free energy density w ≡ W/V as a function of μ for
each phase. Phase coexistence is located by equality of w for the
disordered and lamellar phases at the same value of μ, i.e., by
the crossing of the w vs μ curves of the two phases.
In Figure 1 we show the calculated phase diagram of the

lamellar and disordered phases. The shaded region represents
phase coexistence. At a given temperature (corresponding to a
given value of χ), the coexisting salt concentrations in the
disordered phase and in the lamellar phase are given,
respectively, by the values on the left and right boundaries.
At a given overall salt concentration within the coexistence
boundaries, the lever rule determines the amounts of the
coexisting salt concentrations in the disordered and lamellar
phases. Clearly, the coexisting salt concentration in the lamellar
phase is larger than that in the disordered phase, reflecting the
preference of the salt ions for the lamellar phase. It is also
obvious that at a given overall salt concentration the order−
disorder transition (ODT) spans a range of temperatures
bracketed by the upper and lower boundaries of the coexistence
region. As the overall salt concentration decreases, the two lines
converge to Leibler’s critical value 10.4954 for the second-order
phase transition of the salt-free symmetric block copolymer.
(The slopes of these two lines also converge because of the
critical point nature of this limit.)
From Figure 1, we note that addition of salt considerably

stabilizes the lamellar phase, resulting in a significant increase in
the ODT temperature. For example, using the temperature
dependence in the Flory−Huggins parameter for PEO and PS,
χ = −7.05 × 10−3 + 21.3/T17 with N = 200, at an overall salt
concentration, c0 = 0.02 [M], the lamellar phase remains stable
until 163 °C, and complete melting of the lamellar phase occurs
at 173 °C. In contrast, the mean-field critical temperature of the
salt-free PEO-b-PS system (85 °C) is much lower. For easy
reference, we list some selective corresponding values between
χN and T in Table 1.

The Fredrickson−Helfand theory predicts that concentration
fluctuation should lead to stabilization of the disordered
phase.6,18 Thus, if coexistence in the salt-doped block
copolymers was due to composition fluctuation, then the
ODT temperature should decrease relative to the mean-field
value. On the other hand, a recent theoretical study of salt-free
block copolymers by Qin and Morse18 showed that
quantitatively the mean-field theory can be quite accurate or
even more accurate than the fluctuation theory when χN is
small. It is thus reasonable to conclude that the strongly first-
order transition and coexistence behavior in the salt-doped
copolymers are primarily driven by effects of the salt ions rather
than by concentration fluctuation.

To investigate the effects of the solvation energy of the ions,
we have also examined the case with εB = 2.6, which is the
lower bound of the experimentally measured dielectric constant
of PS. With the decrease of the dielectric constant of the B-
block from εB = 4.0 to εB = 2.6, there is an increased preference
by the anions for the higher-dielectric A-block. As a result, the
salt effects on the transition temperatures are now stronger. At
a given χN (given salt concentration c0), the concentration gap
(temperature range) becomes wider than that for εB = 4.0. For
example, at c0 = 0.025 [M], the width of the coexistence region
in χN is ΔχN = 0.3 for εB = 4.0 and ΔχN = 1.8 for εB = 2.6,
respectively. Also, there is more significant curvature in the
coexistence curves for εB = 2.6 than for εB = 4.0.
Unlike salt-free diblock copolymers where the phase behavior

is governed by the combination χN, for the salt-doped system,
both χ and N affect the phase behavior individually. For
example, if we take a shorter chain length N = 100, the width of
the coexistence region widens at χN = 2, and the salt
concentration at the disordered and lamellar phase boundaries
are 0.144 [M] and 0.170 [M], respectively, compared to 0.070
[M] and 0.079 [M] for N = 200.
We now consider the behavior of the order parameter in the

lamellar phase, σ(r)⃗ ≡ (ϕA(r)⃗ − fA)/fA, at the transition. σ(r)⃗ is
the scaled difference in the local A monomer concentration
from its average value. We denote the maximum of σ(r)⃗ (the
value in the middle of the A domain) as σ. For salt-free systems,
mean-field theory4 predicts that σ increases continuously from
0 as χN is increased past the critical value (10.495 for
symmetric diblocks). With the addition of salt, the appearance
of the lamellar phase from the disordered phase becomes
discontinuous, with a jump in the order parameter from 0 in
the disordered phase to a finite value in the lamellar phase. In
Figure 2, we plot the value of σ on the boundary of the lamellar

phase as a function of χN [Figure 2(a)] and as a function of the
salt concentration c0 [Figure 2(b)]. We emphasize that in these
figures both χN and c0 vary according to the relationship given
by the upper curve in the phase diagram in Figure 1. Clearly, as
χN decreases (c0 increases), the order parameter at the
transition increases. Except in the vicinity of the critical point
(c0 = 0, χN = 10.495), the order parameter is quite large. Thus
at any moderate salt concentrations, the transition from
disordered to lamellar phase is strongly first-order. There is
some quantitative effect of the molecular weight on σ as shown

Table 1. χN for Different Temperatures with N = 200a

T [°C] 80 100 150 200 250 300

χN 10.65 10.01 8.66 7.60 6.73 6.02
aχ = −7.05 × 10−3 + 21.3/T.17

Figure 2. Value of the order parameter σ at the lamellar phase
boundary (upper curve in Figure 1). The red triangles correspond to
the mean-field, second-order critical point of the salt-free block
copolymer computed by Leibler.4 Black solid line and blue dashed line
correspond to N = 200 and N = 100, respectively. (a) σ vs χN and (b)
σ vs c0 [M].
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by the comparison between N = 200 (solid line) and N = 100
(dashed line) in Figure 2, but overall the two sets of curves
behave quite similarly and converge at the critical point.
The molecular weight dependence in the order parameter of

the transition in our theory differs from that in the fluctuation-
induced first-order transition in the Fredrickson−Helfand
theory.6 In Figure 3, we show the asymptotic behavior of the

order parameter σ in the limit of high molecular weight, plotted
as a function of 1/N, at χN = 2 for our salt-doped system.
While the order parameter discontinuity in the fluctuation
theory vanishes as N−1/6 in the limit of 1/N → 0, the order
parameter discontinuity due to salt doping reaches a finite value
σ ∼ 0.45 in this limit.
The salt-induced first-order disordered-to-lamellar phase

transition elucidated in this work is broadly consistent with
existing experimental observations in lithium salt doped PEO-b-
PS electrolytes. The simultaneous presence of sharp and broad
scattering peaks in the SAXS measurements over a range of
temperatures can be qualitatively explained by the finite
temperature window of the transition at a fixed overall salt
concentration shown by our phase diagram (Figure 1).8 The
abrupt change in the ionic conductivity through the lamellar-to-
disordered transition8 is also consistent with a first-order
transition. Our work shows that adding even a small amount of
lithium salts ([Li+]/[EO] < 0.01) can significantly stabilize the
lamellar phase, leading to large increases in the order−disorder
transition temperature. This result, together with our earlier
work on the shift in the spinodal of the disordered phase,
explains the dramatic effects of lithium salt doping on the phase
behavior of block copolymers.9,10 Finally, we note that our
phase diagram (Figure 1) and the order parameter at the
transition (Figure 2) predict an intriguing phenomenonthe
increase in the degree of order in the lamellae during the
melting of the lamellar phase. This phenomenon arises because
as a lamellar phase is heated into the coexistence region
(decreasing χN in the phase diagram) the salt becomes more
concentrated in the lamellar phase. The further χN decreases in
the coexistence region, the higher the salt concentration in the
remaining lamellar phase (see the inset in Figure 1), and hence
the larger the order parameter by Figure 2. It will be interesting
to confirm this prediction with future experiments.
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